Loop Quantum Gravity in Ashtekar and Lagrange–Finsler Variables and Fedosov Quantization of General Relativity

نویسنده

  • Sergiu I. Vacaru
چکیده

We propose an unified approach to loop quantum gravity and Fedosov quantization of gravity following the geometry of double spacetime fibrations and their quantum deformations. There are considered pseudo–Riemannian manifolds enabled with 1) a nonholonomic 2+2 distribution defining a nonlinear connection (N–connection) structure and 2) an Arnowitt–Deser–Misner 3+1 decomposition. The Ashtekar– Barbero variables are generalized and adapted to the N–connection structure which allows us to write the general relativity theory equivalently in terms of Lagrange–Finsler variables and related canonical almost symplectic forms and connections. The Fedosov results are re– defined for gravitational gauge like connections and there are analyzed the conditions when the star product for deformation quantization is computed in terms of geometric objects in loop quantum gravity. We speculate on equivalence of quantum gravity theories with 3+1 and 2+2 splitting and quantum analogs of the Einstein equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop d...

متن کامل

Deformation Quantization of Nonholonomic Almost Kähler Models and Einstein Gravity

Nonholonomic distributions and adapted frame structures on (pseudo) Riemannian manifolds of even dimension are employed to build structures equivalent to almost Kähler geometry and which allows to perform a Fedosov-like quantization of gravity. The nonlinear connection formalism that was formally elaborated for Lagrange and Finsler geometry is implemented in classical and quantum Einstein gravity.

متن کامل

Generalized Lagrange Transforms: Finsler Geometry Methods and Deformation Quantization of Gravity

We propose a natural Fedosov type quantization of generalized Lagrange models and gravity theories with metrics lifted on tangent bundle, or extended to higher dimension, following some stated geometric/ physical conditions (for instance, nonholonomic and/or conformal transforms to some physically important metrics or mapping into a gauge model). Such generalized Lagrange transforms define cano...

متن کامل

Loop quantum black hole

In this paper we consider the Kantowski-Sachs space-time in Ashtekar variables and the quantization of this space-time starting from the complete loop quantum gravity theory. The Kanthowski-Sachs space-time coincides with the Schwarzschild black hole solution inside the horizon. By studying this model we can obtain information about the black hole singularity and about the dynamics across the p...

متن کامل

Quantum Dynamics of Loop Quantum Gravity

In the last 20 years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, nonperturbative quantum theory for the Lorentzian gravitational field on a four-dimensional manifold. In this approach, the principles of q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008